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1.

1.1. An expression of the form L~= -n CveivIJ, where the cv's are arbitrary
complex numbers will be referred to as a trigonometric polynomial of
degree n. By a polynomial of degree n we will mean the finite sum
L~=oavzv, where avEC (v=O, 1,oo.,n).

According to Bernstein's inequality if t is a trigonometric polynomial of
degree n such that

It(8)1 ~ 1

then (for references see [6])

It'(8)1 ~n

In (2), equality holds if and only if

for 8 E IR

for 8 E IR.

(1)

(2)

t(8) = C _n e - inIJ + cneinIJ,

It was shown by van der Corput and Schaake [1] that in the case when
t(8) is real for real values of 8 the much stronger conclusion

It'(8) ± int(8)1 = J {t'(8)}2 + n2{ t(8)}2 ~ n
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holds for all 8 E IR. Inequality (3) is sharp for each 8; in fact, all real
trigonometric polynomials of the form

are extremal. The example t(8) = e±inlJ shows that for an arbitrary
trigonometric polynomial of degree n the quantity It'(8) ± int(8)1 can be as
large as 2n, which is trivially its upper bound.

If p(z) = L~ = 0 avz v is a polynomial of degree n such that

Ip(z)I::::;1 for Izi = 1 (4 )

then p(e ilJ ) = t(e ilJ ), where t is a trigonometric polynomial of degree n
satisfying (1) and so

Ip'(z)l::::;n

Here, equality holds if and only if

p(z) = anzn

for Izi = 1. (5)

If zn p( liz) == p(z), i.e., ak = an _k for 0::::; k::::; n, then (for references see [6])
the right-hand side of (5) may be replaced by n12. The question as to what
happens if

for O::::;k::::;n (6)

was taken up by Govil, Jain and Labelle [5] but remains unresolved. In
[4] we showed that there exists a polynomial of degree n (~2), namely

(7)

satisfying (6) for which

max 1p'(z)1 ~ 1p'( -i)1 =n-l ~ (n-l) max 1p(z)l. (8)
Izl ~ 1 Izi ~ 1

This is surprising since (6) is in some sense quite restrictive. It is clear that
for a polynomial p satisfying (4) and (6) the sharp upper bound for
1 p'(eilJ)1 would depend not only on n but also on 8. We shall see that for
such polynomials

1 p'(e2kni/n)1 ::::; n - 1, k = 0, 1,..., n - 1, (9)

and so the polynomial in (7) happens to be extremal for 8 = -i if
n = 4,8, 12,.... This remains true even if (6) is replaced by the much weaker
assumption ao = an' In fact, we prove
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THEOREM 1. Let p(z) = L:~=o avzv be a polynomial of degree n (;::2)
satisfying (4). If ao= an, then

and so in particular

for OE IR, (10)

Remark. The example

if einO = 1. (10')

shows that in (10') equality can hold at any of the n-th roots of unity for
all n ;:: 2.

As a global upper bound for Ip'(eiO)I, inequality (10) gives us only the
trivial value n. But we will show how it can be used to obtain:

THEOREM 2. Under the conditions of Theorem 1 we have

(11)

If t is a trigonometric polynomial of degree n then

where PI and P2 are polynomials of degree 2n. Thus Theorems 1 and 2
readily imply:

COROLLARY 1. Let t(O) = L:~~ -n cv eivO be a trigonometric polynomial of
degree n satisfying (1). If c _ n= Cn (which is the case if for example t is a
cosine polynomial), then

It'(O)±int(O)1 ~2n-1 +2lcnllsinnOI

and so in particular

for 0 E IR, (12)

Further

It'(knjn) ± int(knjn) 1~ 2n -1, k=O, 1,..., 2n-1. (13 )

1 1
It'(O) ± int(O)1 ~ 2n - 2+ 2(2n + 1)

It is easily seen that

for OE IR. (14)

It'(kn/n) + int(kn/n)1 = 2n - 1
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for the trigonometric polynomial

t(8) = t
n
•
k

( 8) = e - inlJ {( 1_ ei(lJ - (k1t/n»)2

+ e 2i(kTC/n) e 2i(n - 1)0(1 + ei(lJ - (k1t/n»)2 }/4

which satisfies (1) and for which en = Cn =~. We have

It'(kn/n)-int(kn/n)1 =2n-1

for

t: 8t--+ tn.k(8).

1.2. It was proved by Duffin and Schaeffer [3] that if f is an entire
function of exponential type , satisfying

If(x)1 ~ 1

and is real on the real axis, then

If'(x) ± irf(x)1 ~,

for XE IR

for x E IR.

(15 )

(16)

This result generalizes inequality (3) of van der Corput and Schaake since
a trigonometric polynomial t(8) = L~= -n C v e

ivlJ is an entire function of
exponential type n of the complex variable 8. A cosine polynomial being an
even entire function of exponential type one might wonder if Corollary 1
admits an extension to such functions. It turns out that the best possible
upper bound is the trivial bound 2,. To see this let e be an arbitrary
positive number less than, (there is nothing to prove in the case, = 0) and
consider the even entire function

which is of exponential type, and for x E IR

If'.6(X)1 ~ ~(Il- ie
iex

l
2 + le

i6X
- i1 2

)

= ~(leieX + il 2 + le
i6X

_ i1 2
)

~1.

Further, it is easily checked 'that

If' ((4k-l)n) 'f ((4k-l)n)1 2-
<6 2 +IT<e 2 >, e,. e . e k=O, ±1, ±2,....
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We have

k = 0, ± 1, ±2,...

for

f: ZH fT,Ai).

1.3. If p is a polynomial of degree n such that

Ip(x)1 ~ 1 for -1 ~x~ 1 (17)

then p(cos 0) is a cosine polynomial t of degree n satisfying (1) and so as a
special case of Corollary 1 we obtain

(18)-1 ~x~ 1,

COROLLARY 2. Let TAx) = cos n arccos x be the nth Chebyshev
polynomial of the first kind. If p(x) = L~=o avxv is a polynomial of degree n
satisfying (17), then

Inp(x) ±i.JT=? p'(x)\

~ 2n -1 + 2n1_ 1 lanl }1- (Tn(x))2,

and so in particular

I ( kn) . kn ( kn)1np cos --;; ± ism --;; p' cos--;;

~2n-1, k=O,l, ...,n-1. (19)

Further

r.--:::z 1 1
Inp(x) ± i v l-x

2
p'(x)1 ~ 2n-"2+ 4(n + 1)' -1~x~1. (20)

It is clear from the context that inequality (19) is sharp.

1.4. A lower bound for max Izi = 1 Ip'(z) I·
Let p(z) = L~=o avzv be a polynomial of degree n (~2) such that ao= an

and max Izi = 1 Ip(z)1 = 1. The example p(z) = z shows that for such a
polynomial maxlzl~1 Ip'(z)1 may be as small as 1. On the other hand, we
have
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if n;;;:3

if n=2.

THEOREM 3. If p(z) = L~=o avz v is a polynomial of degree n such that
laol = lanl and max 1z1 =! Ip(z)1 = 1, then

n-3
;;;: 1+--1Iaol

n+
max Ip'(z)1
Izl =! ;;;: 1

2. AN INTERPOLATION FORMULA

For the proof of Theorem 1 we need the following

LEMMA 1. If p(z) = L~=o avzv is a polynomial of degree n (;;;: 3) then for
all real y we have

ao + ((n - 1) p(z) - zp'(z) +anzn- 2ao) eiy

+ (zp'(z) - p(z) - 2anzn+ao) e2iy +anzne3iy

1 . 2
=--e'Ysin (yI2)

n-2
n- 2 - (2k1t + y)i/(n - 2)

X L e p(ze(2k1t+ Y)i/(n-2)) (21)
k=! sin2((2kn+y)/2(n-2)) ,

with

1 n-2 1
n - 2 sin

2
(YI2) k~! sin 2((2kn + y)/2(n _ 2)) = n - 2. (22)

Proof Let y (i: 0 (mod 2n)) be an arbitrary real number. Further, let z
be any complex number and consider the integral

I(p) =i F(O d(
1'1 =p

where

Clearly

I(p)-+an as p -+ 00, (23)
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whereas the residues of F at its poles z, 0 and zei(Y + 2kn)/(n - 2), k = 1,..., n - 2,
are

1 1 e- iy
---. 2 {(1-eiY )zp'(z)-(1-eiY )p(z)-(n-2)p(z)},

4 zn sm (yI2)

1 .
--e-IYao

zn

and

1 1 1 e-(2kn+y)i/(n-l)
-iy ( (2k7t+Y)i/(n-2») k-1 2

-4znn_2e sin2«2kn+Y)/2(n-2))pze , - ,...,n-,

respectively. Hence by the theorem of residues

4anzneiy sin2(YI2)

- {(n - 2) p(z) + (1 - eiy ) p(z) - (1 - eiy ) zp' (z) }+ 4ao sin2(Y12)

= -~2 sin2(yI2)
n-
n-2 -(2k7t+y)i/(n-2)

X L e p(ze(2kn+ Y)i/(n-2»)
k=l sin2«2kn + y)/2(n-2)) ,

i.e.,

+{(n - 1) eiYp(z) - e2iYp(z) - (e iY - e2iY ) zp'(z)}

+ (e 2iY - 2eiy + 1) ao

1 . 2
=n _ 2 e'Y sin (yI2)

n-2 e-(2kn+y)i/(n-2)
x L p(ze(2kn+ y)i/(n-2»)
k~ 1 sin2«2kn +Y)/2(n - 2))

which is the same as (21). The assumption "y =1= 0 (mod 2n)" can obviously
be dropped. Formula (21) when applied to zn-l (or to z) readily leads us
to the identity (22).

3.1. Proofof Theorem 1. If p(z) = L~=o avzv is a polynomial of degree n
satisfying (4), then (21) in conjunction with (22) and a result of van der
Corput and Visser [2] implies that

Izi = 1, n~3.
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In the case when ao = an, this latter inequality can be written as

Izi = 1, n ~ 3

from which we readily obtain (10) for n~ 3.
In the case n=2, p(z) has the form ao(z2+ l)+alz so that

e - i8p(ei8
) = 2ao cos 0 + al .

Thus

which gives us the desired estimate.

Proof of Theorem 2. From (10) it readily follows that (11) holds
provided laol ~Wn+2/(n+ 1)). In case laol >~((n+2)/(n+ 1)) we may
use the known estimate [7, p. 125]

to obtain the desired conclusion.

Proof of Theorem 3. Let

P(z) = p(z) - ao and

From

it follows that if IP(e i80)1 = max lzi = I IP(z)1 = M (say), then

1P'(ei8°)1 ~ Mn -IQ'(ei8°)I. (24)

Further, since Q is a polynomial of degree n - 1 such that
max1z1=1 IQ(z)1 =M and IQ(O)I = lanl = laol, we have

IQ'(e i8 )1 ~ M(n - 1) - 2(n -/) laol, () E IR.
n+

Thus, we obtain

2(n - 1)
max IP'(z)1 ~ 1P'(ei80)1 ~ M + 1 laol·
Izl=1 n+

This gives us the desired result for n ~ 3 since M~ 1-laol.
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In the case n = 2 we clearly have

max Ip'(z)1 = max 12a2z +all = 21a21 + lad
Izl = I Izl = I

= la21 + lall + laol

~ max Ip(z)1
Izl = I

=1.
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